Our clean energy future will require more energy storage to help ensure the lights stay on when the sun isn’t shining or the wind isn’t blowing. Your shiny new electric vehicle may also become an important type of battery for our power grid.
New research shows that leveraging the storage potential in electric vehicles, instead of just investing in stand-alone stationary batteries, could save utility customers billions of dollars, while also encouraging drivers to ditch gasoline. A study recently published by researchers at the Lawrence Berkeley National Laboratory (LBNL) shows that the electric vehicles (EVs) expected in California in 2025 could be used to meet the majority of the Golden State’s energy storage mandate that calls for 1.3 gigawatts (GW) of battery capacity by 2024. In fact, EVs can accomplish this both reliably and at about one-tenth the cost of stationary energy storage approaches. This level of storage could power nearly one million average homes, at least for a short while.
That EVs can be this valuable to the grid is a hugely significant finding.
One third of California’s electricity already comes from renewable resources like wind and solar, and the state is on track to meet its goal of generating at least half of its electricity from renewable resources by 2030. And if California Senate Bill 100becomes law this year, the goal for 2045 would be for 100 percent of California’s electricity to come from renewable or zero-carbon sources.
That’s great news for cleaning up our electricity supply, but increasing our reliance on variable resources like wind and solar generation necessitates overcoming a different set of challenges to manage the electrical grid. Thankfully, we already have proven ways to address these potential issues, including better weather forecasting, sharing power across broader geographical areas, and, most pertinent to this blog, the prudent use of stand-alone batteries and EV batteries.
The challenge of integrating variable resources like wind and solar can be depicted by the lovingly-termed “duck curve.” At its core, the “duck curve” depicts the large swing in net electricity demand and supply that occurs through the day as the sun moves across the sky or wind patterns change, and electricity supply is needed from non-renewable resources. This has implications for how grid operators must manage the various resources to ensure reliability. The graph below takes a typical spring day (March 31) and plots out what the “net load” would be from 2012 to 2020. Renewable electricity is assumed to satisfy the power demand first, and the leftover, unserved demand is termed “net load.”
read more
Recent Comments