Many recent big technological advances in computing, communications, energy and biology have relied on very small materials, nanoparticles, with dimensions less than 1/1,000th the thickness of a sheet of paper. However, it can be hard to determine the best nanomaterials for these applications because observing nanoparticles in action requires high spatial resolution in “messy,” dynamic environments.
In a recent step in this direction, a team of Stanford engineers has obtained a first look inside phase-changing nanoparticles, elucidating how their shape and crystallinity – the arrangement of atoms within the crystal – can have dramatic effects on their performance.
Recent Comments