One of the more interesting storylines in conjunction with the recent total solar eclipse in the United States was how it might affect power plants that rely on the sun to produce electricity.
Many in the energy industry wondered how the power grid would function when the sun went dark in the middle of the day, since solar contributes nearly 42,000 megawatts, or 5 percent, of peak electricity demand. How would utilities manage the relatively rapid down-ramping, followed by an equally rapid up-ramp of power flowing from solar plants?
Fortunately, both the grid and the plants powering it proved remarkably resilient to the energy and demand fluctuations.
But as the U.S. shifts away from traditional fuels and relies more heavily on renewables like wind and solar for power generation, the question becomes even more important. How will we keep the lights on and air conditioning running and our phones and electric vehicles charged when the sun goes down or the wind stops blowing?
This is where reliable and efficient advanced energy storage will play an increasingly crucial role in grid stability in the years to come. According to the U.S. Energy Information Administration, approximately 10 percent of total U.S. energy consumption and 15 percent of electricity generation came from renewable sources in 2016. The U.S. Department of Energy has set a goal of 30 percent of U.S. electric generation to come from renewables by 2025. Solar and wind power will make up the lion’s share of that new renewable generation capacity.
While natural gas, coal and nuclear power will continue to provide a significant portion of our baseload power for some time to come, intermittent energy sources play a role too — and this role is expected to increase. If we’re truly to make renewables an economically viable, baseload option, we must have ways to store large amounts of power for use when renewables can’t meet the demand.
Recent Comments