Morning Brief: The Wolf of Wall Street Teaches Solar Sales, Misleading Solar Ads Tout 100% Free Panels

on May 26, 2020
PV-Magazine

In a world flooded with webinars on how to improve sales from home, how does Suntuity Solar separate itself from the crowd? By having a webinar hosted by Jordan Belfort, the inspiration for the Oscar-nominated film The Wolf of Wall Street. The free multi-episode virtual training series focuses on teaching effective remote work strategies that can help inspire and guide individuals towards maximizing their income from the comfort of their own homes. A playback of the first session is available here. Source: Suntuity

U.S. energy storage market participants operating at the bulk power system level should evaluate their supply chains and take other measures in light of recent U.S. government action to protect national security by limiting equipment transactions involving foreign adversaries, experts said Thursday. Earlier this month President Trump signed an executive order on Securing the United States bulk power system that lays the groundwork for a ban on power grid equipment from foreign adversaries posing a national security threat, according to the Energy Storage Association trade group. These actions raise import issues related to certain energy storage equipment potentially with regard to China.It is not yet clear if the EO covers energy storage but it might because storage can be used to provide reliability services either stand-alone or paired with generation, she said. “It’s entirely possible that storage could be excluded entirely, but we just don’t know right now.” Source: S&P Global

Misleading solar ads touting 100% free panels and fake stimulus programs spread on Facebook as the coronavirus upends door-to-door sales: While scrolling through Facebook earlier this month, Vikram Aggarwal wasn’t surprised to see a handful of ads for rooftop solar panels. As the founder of an online solar marketplace, Vikram Aggarwal is an obvious target for the tech giant’s sophisticated algorithm. What did catch his attention was what those ads were promising. “None of them were being very truthful,” said Aggarwal, the founder of the website EnergySage. “They’re all very shady.” Misleading ads are not new to the solar industry, but experts that Business Insider reached for this story said the problem could become worse in the wake of the coronavirus pandemic. Source: Business Insider

read more
Fractal Energy Storage ConsultantsMorning Brief: The Wolf of Wall Street Teaches Solar Sales, Misleading Solar Ads Tout 100% Free Panels

A Protocol for Making Renewable Energy Sizing and Selection Decisions

on May 1, 2020
Power-Magazine

Much has been written about renewable energy, but few stories have focused on the complexity of determining the optimal mix of solar and wind generation, and the kind and amount of energy storage, that implementation of renewable portfolio standards will require. This article describes a protocol to do that. The findings show that the amount of required storage will be several times greater than most people in the power industry believe, and that prevailing weather conditions are a critical component of the decision-making.

Climate change concerns have resulted in state governments issuing regulations that require increased use of renewable energy such as solar and wind power. At least 29 states and the District of Columbia have passed renewable portfolio standards (RPSs), and eight additional states have set non-binding renewable energy goals. These regulations vary considerably, with some RPS requirements applying only to investor-owned utilities, and some including municipalities and electric cooperatives. Fifteen states have requirements for 25% or greater renewable energy within the next 10 years, and seven states have requirements for 50% or greater with timeframes longer than 10 years. This situation, together with uncertainties surrounding lithium-ion (Li-ion) batteries and the availability of suitable alternative storage technologies makes investment decisions difficult for all stakeholders.

Currently, limited renewable energy is incorporated into the grid through the use of conventional energy operating strategies, which account for the generation limitations of solar and wind. However, as the requirements for renewable energy increase, adequate and reliable storage will become a critical necessity because solar and wind power are intermittent. A methodology to determine the necessary type and size of renewable energy generation and storage requirements to meet customer expectations of reliable electricity 24 hours a day under all weather conditions is needed. The insights that follow are the result of such a methodology.

A Renewable Energy Generation and Sizing Methodology
Solar power is only generated during daylight hours and is significantly affected each day and over the year by cloudy and partially cloudy days. Wind speed can also change drastically over the course of the day and with long-range weather patterns. Both solar and wind variability significantly affect the sizing of a specific renewable energy power facility. The charging and discharging efficiency and parasitic power loss associated with the storage component not only affect the size of the storage facility, but also that of the solar or wind farm.

The existence of these variabilities, which do not exist with conventional power sources, suggests that the analysis of renewable energy storage must be done over short periods to assure that renewable energy and associated storage are adequate to meet the grid load at all times, while meeting the regulatory requirements under all weather conditions. In this article, a proprietary model utilizes a methodology that considers factors such as grid load, RPS requirements, type of storage facility, charge/discharge efficiency, solar generation profile, typical cloud conditions, and wind speed profile, among other things. The insights that follow are based on typical equipment operating characteristics, weather conditions, and capital investment for the solar farms, wind farms, and various storage technologies.

The analysis for a specific site is unique because it must take into account the expected prevailing weather conditions at the location over the course of a year. Some of the characteristics that must be considered in making renewable energy investment decisions include the size and type of the installation, expected weather conditions, capital costs, operating costs, equipment reliability, and maturity of the technology. The development and demonstration status of storage technologies is a critical consideration in utility industry short- and long-term planning.

read more
Fractal Energy Storage ConsultantsA Protocol for Making Renewable Energy Sizing and Selection Decisions

Stem Transitions Its Classes Online For Solar + Storage Partner Certification

on March 30, 2020
Solar-Power-World

AI-driven energy storage service provider Stem announced the debut of Stem University, an online certification program that provides required educational classes and tools for solar companies that are in the Stem Partner Program to gain expertise in storage. Stem University leverages the company’s decade of experience in delivering an end-to-end blueprint for storage success across the entire energy lifecycle.

Stem’s Premier and Certified Partners are required to complete Stem University coursework in three initial distinct certification tracks: sales, sales analytics and deployment. Additional certifications in commercial operations, product and back up power will be added to Stem University. Once a partner has one or more employees who have completed these tracks, they will become officially “Stem Certified.” To continue in the Stem Partner Program, certifications must be renewed annually.

“Our solar partners continue to come to us for guidance and advice on how to deploy and monetize storage within their implementations,” said Alan Russo, Chief Revenue Officer, at Stem. “As the market leader in intelligent storage, we believe it is our responsibility to share our broader domain expertise with the industry so they can take advantage of sophisticated storage use cases, more easily navigate local permitting requirements and understand the full benefits of solar + storage deployments. Our unique Stem University program will enable our partners to learn what it takes to optimize storage in commercial and industrial deployments, and ultimately drive greater savings and new revenue opportunities.”

Wood Mackenzie recently projected that global energy storage deployments will grow more than 12-times from 2020 to 2024. Stem has taken several steps to ensure its solar developers are in the strongest position to leverage these opportunities. The company has built a robust partner program with more than 50 active solar partners, which delivered over 159 MWh in 2019. This network originated more than 50% of Stem’s business last year.

Courses available in Stem University are designed to provide hands-on business and technical training for sales professionals, sales analysts and project managers. These resources also provide partners with background on how to identify and address customer needs, creating mutually beneficial deployments that add value for all parties.

read more
Fractal Energy Storage ConsultantsStem Transitions Its Classes Online For Solar + Storage Partner Certification

The Solar Sector Is Suffering From Coronavirus Contagion

on February 20, 2020
oilprice-logo

While analysts and international agencies are already assessing the fallout from the coronavirus outbreak on global oil demand, the damage to the energy industry is extending well beyond oil. Promising fast-growing green energy technologies and sectors are also suffering because the outbreak is disrupting China’s industrial activity and manufacturing of crucial components for the solar, wind, and battery storage industries.

Much like China’s oil demand slump impacts the global market, the Chinese slowdown in manufacturing of renewable energy components has a ripple effect throughout the global supply chain of major renewable energy industries.

The current situation highlights China’s increased importance in the global energy markets over the past two decades since the SARS outbreak – from oil to battery storage, all energy sectors suffer when Chinese manufacturing and demand hits the brakes.

In the solar industry, factory shutdowns and production disruptions across China have delayed exports of solar panels and other components, disrupting the supply chain of the solar power industries and affecting solar projects in Asia and Australia. The disruption of the solar supply chain could become costly for as much as US$2.24 billion worth of solar projects across India, which relies on China for 80 percent of the solar modules it uses, CRISIL Ratings, an S&P Global company, said earlier this week. A total of 3 gigawatts (GW) of solar project across India risk incurring time and cost overruns, including penalties for missing commercial operation timelines, CRISIL noted.

“If the production interruption in mainland China lasts longer than one month, factories in south-east Asia and the US will start to see supply shortages that will reduce their production output,” Xiaojing Sun, an Wood Mackenzie senior analyst in the energy transition research team, said last week, as carried by Renews.

read more
Fractal Energy Storage ConsultantsThe Solar Sector Is Suffering From Coronavirus Contagion

Google Inks Huge Corporate Solar-Plus-Storage Deal in Nevada

on January 9, 2020
Greentech-Media

Google and Nevada utility NV Energy have joined up on an energy supply agreement to power an under-construction data center outside Las Vegas, with future capacity that rivals the largest corporate solar power-purchase agreement announced to date in the U.S.

NV Energy plans to procure 350 megawatts of solar and between 250 and 280 megawatts of storage to serve the Google facility in Henderson, Nevada. The utility said it will use “a new renewable facility, or a small portfolio of facilities [comprising] solar and collocated battery energy storage,” according to a December regulatory filing. NV Energy plans to supply Google with renewables purchases or its own excess generation until projects are complete.

The utility intends to amend its integrated resource plan to gain approval for the projects, a move that’s “straight-up unique,” said Dan Finn-Foley, director of storage research at Wood Mackenzie Power & Renewables.

On its own, the solar capacity appears tied for the largest corporate solar deal signed so far in the U.S. But the project’s storage component is perhaps its most significant element. The capacity alone — which rivals other recent utility deals, including from NV Energy itself — is “big news,” said Finn-Foley. What’s more, the incorporation of storage indicates a growing interest among large corporate buyers to shape clean electricity purchases to round-the-clock demand.

“You can draw a straight line between Google’s aspiration for 100 percent load-following renewable energy and energy storage’s inclusion in this agreement,” said Finn-Foley.

While large-scale renewables procurements have become commonplace for many corporations — now accounting for more than 15 percent of the total utility-scale solar pipeline — buyer requirements are becoming more sophisticated. Many want to match their real-time consumption to 100 percent renewables; Google has so far done so only on an annual basis.*

If others follow, Finn-Foley said it would represent a “sea change in how corporations approach renewable energy.”

“Corporations have long used wind or solar to go ‘100 percent green,’ but there is a new effort to actually time-match consumption rather than just buying an offsetting amount of kilowatt-hours,” said Finn-Foley.

read more
Fractal Energy Storage ConsultantsGoogle Inks Huge Corporate Solar-Plus-Storage Deal in Nevada

To Store Renewable Energy, Try Freezing Air

on January 3, 2020

The system that supplies clean electricity to Vermont is not exactly a model of Yankee ingenuity.

In 2011, the state adopted a plan to get 90% of its power from renewable sources by 2050. That led to a surge of wind-generated power from the northeastern part of the state and an expansion of solar.

But transmission lines in this sparsely populated part of Vermont have such low capacity that much of the renewable energy is often unavailable because the lines are too congested. The state was deprived of another form of emission-free power in 2014 when an aging nuclear power plant called Vermont Yankee was permanently shut down.

So what can Vermont do?

A British company called Highview Power proposes a novel solution: a storage system that uses renewable electricity from solar or wind to freeze air into a liquid state where it can be kept in insulated storage tanks for hours or even weeks.

The frozen air is allowed to warm and turn itself back into a gas. It expands so quickly that its power can spin a turbine for an electric generator. The resulting electricity is fed into transmission lines when they are not congested.

“Vermont has transmission issues,” explained Salvatore Minopoli, vice president of Highview’s USA affiliate. “It’s a situation that many places in the U.S. are dealing with where renewable energy is being deployed more and more. It’s power that’s intermittent. They need something to balance their system out.”

Minopoli said that “the longer duration of your energy storage, the more economical it is for a Highview system,” rather than using big electric storage batteries.

For years, utilities have tried other non-battery approaches. One is pumped storage, where utilities use electricity to pump water uphill when power is cheap, and then let it flow down through a generator, creating electric power when it is more expensive.

Some utilities even pump air into played-out natural gas fields, compressing it to spin turbines when it’s released. But Minopoli pointed out that the Highview approach doesn’t need hills or abandoned gas fields. It can be built on a 2-acre site almost anywhere.

read more
Fractal Energy Storage ConsultantsTo Store Renewable Energy, Try Freezing Air

Solar-Energy–Harvesting Hybrid Device Provides Uninterrupted Power

on December 31, 2019

Integrated system simultaneously harvests and stores solar thermal energy with low losses for 24/7 power under all conditions.

Researchers at the University of Houston have designed a device that efficiently captures solar energy and stores it for use by applications for the internet of things (IoT) and industrial IoT. Unlike solar panels and solar cells, which use photovoltaic technology for direct electricity generation, the hybrid device leverages the physics of molecular energy and the accumulation of latent heat to make the collection and storage of energy a 24/7 process, addressing a primary shortcoming of current solar products.

The researchers synthesized the device using norbornadiene-quadricyclane (NBD–QC), an organic compound with high specific energy and extended storage times, as the molecular storage material (MSM), separated from a localized phase-change material (L-PCM) by a silica aerogel to maintain the necessary difference in working temperature.

The common approach for storing solar energy is the use of batteries coupled with photovoltaic systems for both small- and large-scale installations. It is not only electricity that needs to be stored: An equally useful aspect of energy transition is the ability to capture and store solar thermal energy. That goal is not so easy to achieve, however, especially if you need a system that can preserve heat for long periods.

The challenge has spurred a new line of research in recent years that is devoted to the creation of solar storage on demand. The critical point of these systems remains efficiency. The Houston researchers’ development could thus drive decisive change in the thermal-battery sector.

Efficient harvesting and storage of solar thermal energy are essential to exploiting the abundant solar radiation that reaches Earth’s surface. Today’s systems use expensive materials with a high optical concentration, which leads to high heat losses.

The new device is based on a hybrid paradigm that uses daytime heat localization to provide 73% collection efficiency on a small scale and ∼90% on a large scale. In particular, at night, the energy stored by the hybrid system is recovered with 80% efficiency and at a higher temperature than during the day, setting it apart from other state-of-the-art systems, according to a paper published by the researchers in the December issue of Joule.

read more
Fractal Energy Storage ConsultantsSolar-Energy–Harvesting Hybrid Device Provides Uninterrupted Power

The Year in Solar, Part III: Battery Breakthroughs, Inverter Trouble, Sustainable Role Models And New Tech

on December 27, 2019
PV-Magazine

As we moved into the third quarter of another eventful year in PV, the breakthroughs in storage predicted for 2019 appeared to be taking shape, not least in the U.S. where two big battery projects are set to be deployed in 2021.

The U.S. Energy Information Administration in July predicted the 1 GW of battery storage systems expected in the States this year would grow to 2.5 GW by 2023, helped along by Florida Power and Light’s 409 MW Manatee Solar Energy Center in Parrish and the initial, 129 MW phase of oil and gas company Helix Energy Solutions Inc’s 316 MW Ravenswood facility in Queens, New York.

That encouraging prediction came despite the findings of MIT researchers a month later that the cost of battery storage systems would have to fall almost 90% – to less than $20/kWh of capacity – to enable an entirely renewable energy power system. The number crunchers did point out, however, reducing by just 5% the amount of generation from solar and wind power – perhaps by methods such as demand-side management – would raise that storage project break-even figure to around $150/kWh. MIT folks also estimated, in August, global heating will affect the performance of solar panels, reducing yield by around 0.45% of each degree Celsius of global temperature rise.

Is gas a necessary evil?

The cost hurdle of energy storage was cited as one of the reasons why natural gas must remain a key back-up element to national grids, according to an interview given to pv magazine by Tom Vernon, MD of British company Statera, which operates both battery storage capacity and gas-fired peaking power stations in the U.K. It was a divisive article, which prompted convincing counter-claims from the proponents of storage solutions such as pumped hydro but it certainly added to the debate over the composition of the future energy mix.

The business case for battery storage was illustrated by the performance of the Tesla-supplied, 100 MW/129 MWh Hornsdale Power Reserve in South Australia, which cost French owner Neoen €56 million (US$62.3 million) and had already repaid €8.1 million in its first six months of operation by providing grid services and power to the state government.

We also saw the flexible scale of battery storage during Q3, with products evening out renewable energy supply from individual household to national levels. Japanese electronics giant Panasonic unveiled its EverVolt lithium-ion household storage system at the Solar Power International trade show in Salt Lake City in September, with the U.S. model available in 5.7-34.2 kWh sizes.

read more
Fractal Energy Storage ConsultantsThe Year in Solar, Part III: Battery Breakthroughs, Inverter Trouble, Sustainable Role Models And New Tech

Scientists Discover Three New Species Of Solar Power Plants in 2019

on December 26, 2019
PV-Magazine

For a long while, the job of solar power was to deliver daytime electricity – starting to pump the juice in earnest somewhere around 10 a.m., and finishing at 2 p.m. And every single drip of electricity was needed to be used to get investors into the project. This reality is no longer. For instance – we’re now talking about how in Minnesota overbuilding solar power and dumping “extra” electricity is cheaper than seasonal storage and gas over the coming decades. This ain’t your parent’s solar power.

In July of this year, a project in Connecticut was completed with a DC to AC ratio – the ratio of total solar panel wattage to solar inverter capacity – of 1.8 to 1. This value is significant (greater than the average closer to 1.3:1) because it shows that large developers have fully grasped, and are deploying, a strategy that takes full advantage of cheap solar panels to gain greater benefit. While a normal solar power plant might start clipping—i.e., dumping electricity produced by the solar panels that the inverter isn’t able to export—as the day approaches 12 noon, a plant like this will begin clipping much sooner. Generally, this wasted electricity is lost revenue. and designers abhor it. However, a plant like this will also offer a more consistent amount of electricity delivered to the power grid—starting much earlier and ending much later. As well, it will also offer a greater amount of electricity during the low sun wintertime periods. An analysis by Fluence suggested that these extra solar panels, beyond the 1.3:1 ratio, cost approximately 60¢/Wdc to install—far cheaper than standard system pricing.

What might be the most significant solar project of the year was developed by 8minute Solar Energy—the Eland Solar Power Plant totalling 400MWac / 600(?)MWdc plus 300MW/1,200MWh of energy storage. The facility will sell its electricity to two separate California buyers at just under 4¢/kWh. The plant was, to the best of this author’s knowledge, the first large solar plus storage facility that could arguably be considered a true power plant.

But the real kicker of this facility, and the reason there is a “?” after the 600 MWdc above, is the capacity factor that approaches 60% per CEO Tom Buttgenbach. This value is far above the peaks of AC capacity factors found in the 35% range per recent research. There are a few reasons this plant can offer a value like this:

  • The plant is located in the Mojave Desert with some of the world’s best sunlight
  • Single axis trackers “widen the shoulders” and up production overall by 15-30%
  • DC coupled energy storage captures and later on delivers the clipped electricity
  • And last, but with a question mark as the actual values aren’t known, it is probable that bifacial solar modules and/or an oversize DC to AC ratio are pumping out extra electricity for those batteries to grab.
read more
Fractal Energy Storage ConsultantsScientists Discover Three New Species Of Solar Power Plants in 2019

How The Humble Chairlift Could Revolutionize Renewable Energy

on November 18, 2019

What do you see when you imagine a zero-carbon future? Electric buses zipping by? Rolling hills covered with solar panels? Offshore wind farms towering over the sea? If batteries are part of your vision, good thinking. But there’s a promising, if whimsical, piece of the renewable energy puzzle that might be missing from your mental picture: the world of gravity energy storage.

When the grid depends on clean but sporadic natural resources like wind and the sun, we’re going to need ways to capture any extra energy they produce so we can use it later. Lithium-ion batteries help solve that problem, but they have limitations. They degrade over time, and they aren’t suited to store energy for months-long periods, like a seasonal stretch of gray skies or motionless air.

Enter gravity energy storage. Generating electricity using gravity is hardly a new concept — think of your classic hydropower plant, which captures the energy of falling water via a turbine. But some hydropower systems don’t just produce energy. A “pumped-storage” hydroelectric plant draws excess energy from the grid and uses it to pump water back up into an elevated reservoir where it can fall again. When full, the upper reservoir is like a charged battery, ready to be deployed for weeks or months at a time, depending on how much water it holds.

The United States already uses pumped-storage hydropower. In fact, it currently accounts for 95 percent of our utility-scale energy storage. But it’s tough to add a new pumped-storage project to the grid — it requires building a dam and creating new reservoirs, which are expensive and politically unpopular. Two-thirds of existing pumped-storage hydropower plants were built in the 1970s and 1980s. Only one new plant has come online in the past fourteen years.

But who needs water when there are all kinds of things we can slide down a mountain or drop off a cliff? Really, you can use almost any material for gravity energy storage, as long as it’s heavy, cheap, and you can figure out how to transport it up and down a steep slope.

read more
Fractal Energy Storage ConsultantsHow The Humble Chairlift Could Revolutionize Renewable Energy