A group of Drexel University researchers have created a fabric-like material electrode that could help make energy storage devices — batteries and supercapacitors — faster and less susceptible to leaks or disastrous meltdowns. Their design for a new supercapacitor, which looks something like a furry sponge infused with gelatin, offers a unique alternative to the flammable electrolyte solution that is a common component in these devices.
The electrolyte fluid inside both batteries and supercapacitors can be corrosive or toxic and is almost always flammable. To keep up with our advancing mobile technology, energy storage devices have been subject to material shrinking in the design process, which has left them vulnerable to short circuiting — as in recent cases with Samsung’s Galaxy Note devices — which, when compounded with the presence of a flammable electrolyte liquid, can create an explosive situation.
So instead of a flammable electrolyte solution, the device designed by Vibha Kalra, PhD, a professor in Drexel’s College of Engineering, and her team, used a thick ion-rich gel electrolyte absorbed in a freestanding mat of porous carbon nanofibers to produce a liquid-free device. The group, which included Kalra’s doctoral assistant Sila Simotwo and Temple researchers Stephanie L.Wunder, PhD, and Parameswara Chinnam, PhD, recently published its new design for a “solvent-free solid-state supercapacitor” in the American Chemical Society journal Applied Materials and Interfaces.
“We have completely eliminated the component that can catch fire in these devices,” Kalra said. “And, in doing so, we have also created an electrode that could enable energy storage devices to become lighter and better.”
Recent Comments