With threats to electric reliability increasing, it is easy to understand why power outages worry retailers. So what are the solutions?
The most obvious is a backup generator. While this may seem like an expedient solution, procuring backup generators is costly and complex. Their purchase requires sizing analysis, engineering, building permits, construction, and routine maintenance that includes inspection, loaded testing, and fuel conditioning if they use diesel.
Failure to adequately maintain backup generators will create operational problems that a retailer may not discover until it is too late. Backup generators sit idle for most of the year, only running during emergency operations. Because of this infrequent operation, maintenance is sometimes skipped, making backup generators less likely to work when needed and far less reliable than a microgrid. In contrast, microgrids frequently interact with the grid, so they undergo constant testing and conditioning, increasing the likelihood they will work during an emergency.
The heart of a microgrid
It is important to understand what a microgrid is and how it functions, and how is can contribute to electrical reliability. As the name suggests, a microgrid is a smaller version of the electric power grid installed on-site at the user’s facility.
A microgrid can serve a single building, a business campus, a college campus, a military base or even a community. A microgrid’s defining characteristic is its ability to operate in isolation from the surrounding grid.
When designed for resiliency, a microgrid’s defining characteristic—what makes a microgrid a microgrid—is its ability to operate in isolation from the surrounding grid. A grid-connected microgrid ‘islands’ from the central grid when it senses a disruption, such as a power outage. The microgrid then activates its system to supplant the lost grid electricity.
Islanding occurs via a microgrid controller, the technology at the heart of the microgrid, which allows the microgrid to interact with the central grid. When it senses a problem on the grid, the controller sets up the activities to ensure power flows to its host from the on-site system. Retailers are able to maintain continuous operations, despite severe weather or other grid threats.
A microgrid also can provide advantages to a retailer by interacting with the grid during non-emergencies. For example, the microgrid may sell services to the grid or leverage changes in pricing, which can produce a revenue stream or offset microgrid costs.
Recent Comments