Solar energy has gained traction in the energy market, altering the load profiles that utilities have to satisfy. This is forcing them to adapt and evolve. Increasing solar generation in the afternoon is offsetting the high demand during those hours. Load continues to surge into the evening when solar generation is no longer available, exacerbating the rise.
Utilities are changing their pricing structures to cope with these variations, which is where storage comes into play. As peak price hours shift later into the day, when solar generation is unavailable, storage can be used to capitalize on the potential benefits. We’re entering a more sophisticated utility environment that no longer rewards solar only installations; adding storage is becoming necessary to make microgrids more economically viable.
It would be naive to believe that utilities will not continue making adjustments in the future. They will endeavor to stay ahead of the renewables curve, and customers are getting smarter about gaining an economic advantage from the utility rates. Using intelligent controls rather than scheduled controls is one way to achieve this. With ‘set it and forget it’ scheduled controls, a battery is set to charge before the known high rate time period, and set to discharge during that expensive period. When the utility changes that window, those settings have to be changed on every microgrid, or economic opportunities will be missed.
Self-modifying intelligent controls
Intelligent controls, on the other hand, modify themselves under changing conditions. The controls can allocate energy, or decide when to discharge the battery and by how much, in response to changes in the utility rate structure. Thresholds can be automatically altered based on assessments of demand changes, and the system can respond to live weather data, for example carefully managing the energy stored in a battery if an increase in cloud cover is predicted.
At CleanSpark, intelligent controls are applied for an off-grid microgrid in the deserts of California. The goal is to minimize the use of the rented diesel generator, to reduce cost. The facility is in the growth phase, so the site has been modeled to understand the most appropriate sizes for future diesel generation, solar and storage. Real time controls balance the load, solar, and storage to reduce the running of the generator. As a result, the generator did not run during the second half of August, saving an enormous amount of money.
Recent Comments