Battery storage is gaining a foothold in the California peaker plant market previously served by fast-acting natural gas generators.
Replacing gas peakers notches an early victory for the energy storage industry, but it is not sufficient to decarbonize the grid. Short-duration batteries have a physical limitation: They cannot deliver power indefinitely, and longer-duration options are rare at commercial scale.
That raises the question of what comes next as California, joined by a growing cohort of states, moves toward a legislative mandate of zero-carbon grid power by midcentury.
Nick Chaset grapples with that question as the CEO of East Bay Community Energy, a local organization empowered to source clean electricity for Alameda County, across the bay from San Francisco. His organization recently signed a contract to replace a decades-old jet-fuel-burning peaker in downtown Oakland with a 20-megawatt, 4-hour-duration lithium-ion battery plant.
Despite its smaller capacity and limited run time, that battery will step in to provide local capacity in place of the fossil-fueled asset.
“Right now, there’s still tremendous opportunity for the 4-hour[-duration] investments, which we’re going to continue to make,” Chaset said in an interview after the contract-signing ceremony. “What you’ll see is, through 2030 probably, it’s storage, 4- and 6-hour batteries, [that] gets you where you need [to be].”
After that, the path is less certain.
Near-term vision: Build the batteries
Peaker plants make easy targets for the clean energy industry. They act as a form of physical insurance against blackouts, costing ratepayers hundreds of millions of dollars even though they rarely participate in the grid. When they do, they burn dirtier than other resources.
Solar and wind power cannot replace peakers, because they do not dispatch on command. Batteries can, however, and they enjoy certain advantages when it comes to siting in load pockets like urban areas where a new thermal plant may not survive environmental permitting. Moreover, batteries can participate in grid activities when they are not needed for peak power, defraying their cost as a reliability asset.
Recent Comments