Like most consumables in today’s world, batteries from electric and hybrid vehicles have a tipping point beyond which they are no longer viable for use. Instead of stacking these used batteries in some fenced landfill for our grandchildren to deal with, Daimler AG is adapting electric car batteries into energy storage units. The most recent installation is an Elverlingsen, South Westphalia, “live replacement parts store” for the fleet of third generation Mercedes electric smarts.
A joint venture between partners Daimler AG, its subsidiary Mercedes-Benz Energy, GETEC ENERGIE, and technology company The Mobility House has bundled a total of 1920 battery modules in a plant in Elverlingsen in South Westphalia to create an energy storage facility. The stored battery modules are sufficient for at least 600 vehicles. With installed power output of 8.96MW and energy capacity of 9.8MWh, the battery storage plant is available to the energy market, for example, for supplying primary balancing power. Its modular design enables the system to continuously and fully automatically stabilize the power grid.
What To Do With All The Used EV Batteries?
Finding ways to reuse the technology is becoming more urgent as the global stockpile of EV batteries is forecast to exceed the equivalent of about 3.4 million packs by 2025, compared with about 55,000 this year, according to calculations based on Bloomberg NEF data. “The car manufacturers have an upcoming problem, and one that we are already starting to see: this massive volume of batteries,” said Johan Stjernberg, chief executive officer of Box of Energy AB. “The market will be enormous for second-life applications with storage.”
Property owners, developers, and utilities are looking for ways to harness energy storage from these inexpensive used batteries in a “second life” to help integrate variable renewables and save electricity costs. A report from Berkeley Law Center — part of a series on how climate change will create opportunities for specific sectors of the business community and how policy-makers can facilitate those opportunities — says vehicle battery storage programs can aggregate multiple used batteries to develop a bulk, commercial-scale energy storage system and microgrid backup system, among other demonstrations. Lithium-ion car and bus batteries, according to the report, “can collect and discharge electricity for a further 7 to 10 years after being taken off the roads and stripped from chassis.” This extended life has significant consequences for global automakers, electricity providers, and raw-materials suppliers.
Second-life batteries can provide backup power for homes and businesses, and utilities can dispatch peak power from these distributed batteries to relieve expensive fossil fuel-burning power plants, which can compensate for any decreases in renewable energy supply. To be usable as a replacement, a battery needs regular cycling during the storage period –- deliberate, battery-conserving charging and discharging. This prevents exhaustive discharge, which can lead to battery problems.
Recent Comments